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Demand response is
a long-standing
source of power
system flexibility
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General Problem Statement

Increased solar and Additional balancing needs Demand response, ideally
wind generation and a desire for less available year-round, can
mcre:?\se.s.net-load carbon emissions at potentially shift demand from
variability and affordable costs increases high- to low-price times and
uncertainty . i
interest in more forms of reduce renewable energy
demand-side flexibility curtailment

Resource
Individual

resources with @
equipment

capacities in
kW

Target
Bulk power systems —
What can aggregated electric vehicles generator plant
contribute to power systems? capacities in MW,
system capacities in
GW
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Research Question

What is the value of light-duty electric
vehicle (EV) managed charging (EVMC)
to the bulk power system and how does
it vary with:

— Single-day vs. Multi-day flexibility
Dispatch mechanism:
* Direct load control (DLC)
e Real-time pricing (RTP)
 Time-of-use tariff (TOU)
EVMC participation levels

What is the value in terms of bulk power
system energy, capacity, and avoided
emissions?

PUBLIC

Electric Vehicle Managed Charging:
Forward-Looking Estimates of Bulk
Power System Value

Elaine Hale, Luke Lavin, Arthur Yip, Brady Cowiestoll,
Jiazi Zhang, Paige Jadun, and Matteo Muratori

NREL ig a naticnal laboratory of the U.S. D of Energy
Office of Energy Efficiency & Renewable Ene
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Analysis Approach

New high-resolution modeling capability

Energy prices
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Phase 1 — Completed work
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* Peakloadis 28.9 GW
(0.5 GW from EVs; compare to 25.8 GW in 2021)

e Within-ISO generation is 84% clean

(wind, solar, hydropower, biomass, nuclear)
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EV Sales Share
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Analysis Approach

All EV Sales by 2035 Adoption Scenario from TEMPO

EV Sales Share of Passenger Light-duty Vehicles (LDVs) for All Sales Share by Vehicle Type in New England
Counties in the Contiguous U.S. 100%
100%
75%
7o% ) Technology
]
County Region 5 ICEV
50% 50%
—— New England % . PHEV
25% —— Restof US 2 I . BEV
25% I
0%
2020 2030 2040 2050 0% -Illlll
Year 2020 2030 2040 2050
New England LDV Stock Year
12M
oM 2038 Scenario
. 8M Technology * 5.3 million EVs
Q
Y e EVsare 45% of the LDV stock
>

80% of EVs are battery-electric vehicles (BEVs)
16.3 TWh/yr
3.79 GW unmanaged peak load
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State of Charge
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Analysis Approach , I
Heterogeneous, vehicle-level modeling with TEMPO
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Analysis Approach

A cleaner New England grid in 2038

ISO New England (ISO-NE) PLEXOS Models Based on SEAMS
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Research question revisited — comparison of

different dispatch mechanisms key to results

What is the value of light-duty electric
vehicle (EV) managed charging (EVMC)
to the bulk power system and how does
it vary with:

— Single-day vs. Multi-day flexibility
— Dispatch mechanism:
* Direct load control (DLC)
e Real-time pricing (RTP)
 Time-of-use tariff (TOU)
— EVMC participation levels

What is the value in terms of bulk power
system energy, capacity, and avoided
emissions?

Electric Vehicle Managed Charging:
Forward-Looking Estimates of Bulk
Power System Value

Elaine Hale, Luke Lavin, Arthur Yip, Brady Cowiestoll,
Jiazi Zhang, Paige Jadun, and Matteo Muratori

NREL ig a naticnal laboratory of the U.S. D of Energy Technical Report
Office of Energy Efficiency & Renewable Energy NRELTP-6A40-53404
Operated by the Alliance for Sustainable Energy, LLC ~~ September 20 22

This report is available at no cost from the Maticnal Renewable Energy
Laboratory (NREL) at www.nrel gov/publications.

https://www.nrel.gov/docs/fy220sti/83404.pdf
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Key Finding: Aggregating vehicles for direct load control

(DLC) comes at a feasibility cost

Estimated production cost savings for within-session aggregate
flexibility models with different scaling factors

Cost T .Approx Overestimated Savings Start & Shutdown Cost Naive (”Oute I’-apprOX”)
ost Type: : :

Bl Fuel cost Bl voam cost aggregations effectively
— assume that one already-
& Unmanaged EVs Managed EVs P . ) ore
c o | fully-charged vehicle’s abilit
QO c
= 15007 -40 £ to increase load can be
= - o | paired with another already-
O B O . . ..
o 1000+ = charging vehicle’s ability to
IS -20 2 accept more charge.
-2 >
S 500+ Q
3 103
o — R
o 0 1 | 0 =
kS 5
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Key Finding: Individual vehicles responding to price works

for small numbers of vehicles, but is difficult to scale up

Charging profiles for the unmanaged case vs. vehicles responding to day-ahead energy prices
Energy prices were computed using the unmanaged profile as the EV load forecast (zero foresight of price-responsiveness)

15.0 Difficult/expensive to
- Ramp Penalty ($/MWh) | | d k
% 12.5 r\ e==» Unmanaged (Base) === 0 == 100 = 1000 * SEIVe large load SpIkes
© 10.0
7.5

Smoothing response with
5.0 ramp penalty can help

SN B\

007an.5.00 Jan.5.10 Jan.5 20 Jan.6, 06 Jan. 6,16 Jan.7,02 Jan.7.12 Jan.7, 22

ISONE EV Loa
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Key Finding: Highest per-vehicle value from low

The highest per-
vehicle value
tops out at about
S10/month

participation, RTP
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All-in value of production cost savings, capacity savings, and emissions reductions

120 7

Low Estimate

High Estimate

Total per-vehicle Savings ($/veh)

80 1

40 1

e
—Jalue e
acity price \’aetr'\c ron €02
e o
{\0
reduc
e+
bl
@
®

Within-week flexibility is
about 70% more valuable
than within-session

flexibility

2

3

4

0

1'

2

Avoided Firm Capacity (% Net Peak Load)

DispatchType
+ DLC

RTP

TOU12

TOU44

4+ m >

PctParticipation
® 5

DelayType
* Session
* Week
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Key Finding: Higher participation levels require

Only direct load
control provided
significant
production cost
savings for all
participation levels

coordination with DLC
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All-in value of production cost savings, capacity savings, and emissions reductions

Total per-vehicle Savings ($/veh)

120 1

80 1

40 1

Low Estimate

High Estimate

2

3

4

0

1'

2

Avoided Firm Capacity (% Net Peak Load)

DispatchType
+ DLC
4+ RTP

PctParticipation
® 5

DelayType
* Session
* Week
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Summary: Managed EV charging can reduce bulk system cost 4-7% but

requires coordination and low per-vehicle enablement costs

e Coordination of EVMC response is required starting at modest participation levels
(~2-3% of total load EVMC) and comes at an aggregation feasibility cost

* Highest per-vehicle value is achieved at low participation levels responding to time-
varying price

* Within-week flexibility more valuable than within-session flexibility

* If all EVs fully participate through low-error DLC mechanism, we estimate total
system savings of:

Flexibility type Production Cost Power Sector Firm Capacity
Savings (%) Emissions Savings (%) | from EVMC (MW)
4.4 5.2 780

Within-session (single day)

Within-week (multi-day) 5.6 6.9 830

yielding per-vehicle value estimates of $25/vehicle-yr to $37/vehicle-yr.

NREL | 15



New work!
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New Project: Managing Increased Electric Vehicle Shares on

Decarbonized Bulk Power Systems

Electricity prices

_______________________________________

J |
TEMPO & EVI-X dsgrid-flex :
Simulates vehicle adoption and Estimates flexibility resource and ReEDS Capacity expansion, generation,
EV charging profiles; Generates can perform dispatch Simulates bulk power grid investments, energy shifting, curtailment,
EVSE network SEMAES retirements, and operations system costs, value of EVMC
Washington County, VT o \/ \ :? 2 BaET NPV of Electricity System Cost
30 B / \ %%—. — 5.000 - :’n‘;ﬁ;:‘eﬂ Enhanced 1 —o.'”“"
% , l\:im —_> 100: \ | |— 54' 500 / — ;}f;&::ﬁ,:: —> 3 .Mn" o
27 M A o § 3000 — 3';::‘:’9‘”‘“" _g' o 4 E
f; lgzl 2N AT Y r/{‘.l‘f\‘ ;[/\; g Ez.ouo ‘ o cealmicee E .'D"% ..”%
10 CLAANT/ AN AT N B -—ec e (2506
Zi: i I/""JJ UJ v I'|‘ WI\'LI‘ = 3 Lo = zﬁ::ear o 1 .
our of Dxy — Max — Baseline — Deferred — Flexible
Vehicle-level charging profiles for
ReEDs balancing authorities
Building on the completed The new multi-year project, sponsored by the DOE EERE Vehicle Technologies
project’s innovations around: Office (VTO), is extending the methodology to include:
« Single and multi-day Capacity expansion modeling with EVMC as an investible resource

 Medium and heavy-duty vehicles
 Spatially resolved electric vehicle supply equipment (EVSE) and EV charging
* Fixed assets (e.g., EVSE scenarios) as management strategies

Nationwide, path-dependent impacts on bulk power system costs and related
metrics

charging flexibility

* Exploration of aggregation
and comparing direct control
to price responsive dispatch



PUBLIC

Stay in touch!

Luke.lavin@nrel.gov

Elaine.hale@nrel.gov

Electric Vehicle Managed Charging:
Forward-Looking Estimates of Bulk
Power System Value

Elaine Hale, Luke Lavin, Arthur Yip, Brady Cowiestoll,
Jiazi Zhang, Paige Jadun, and Matteo Muratori

NREL ig a naticnal laboratory of the U.S. D of Energy Technical Report
Office of Energy Efficiency & Renewable Energy NRELTP-6A40-53404
Operated by the Alliance for Sustainable Energy, LLC September 2022

This report is available at no cost from the Maticnal Renewable Energy
Laboratory (NREL) at www.nrel gov/publications.

Contract No. DE-AC36-06G028305
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Methodological Finding: Energy and capacity bounds

of EV aggregations cannot be naively added

* Aggregation is needed
for EVs to participate in
wholesale electricity
markets (>0.1 MW), but
simple addition of
individual vehicle
flexibility overestimates
resource

 Why: A fully-charged
vehicle’s ability to
increase load can be
paired with another
vehicle’s ability to
accept more charge

Individual Vehicle Charging Schedules

100%

50%

EV, state of charge

0%

100%

50%

EV, state of charge

0%

Idle Lowest price 29 Jowest 3 Jowest
\ o Qg/ Idle (plugged into charger)
7. r’z?/
\/’% O
& <
\
\Y/
4 8 12 16 20 24
Hour of week
Idle Lowest price 2" Jowest 3 Jowest
\ N
<> q
. o
\/L//, pr)bldle (pIug)/o,
X &/
o
/¢
4 8 12 16 20 24

Hour of week NREL | 20



Methodological Finding: Energy and capacity bounds

of EV aggregations cannot be naively added
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* Aggregation needed for
EVs to participate in
wholesale electricity
markets (>0.1 MW), but
simple addition of
individual vehicle
flexibility overestimates
resource

Aggregate state of charge

200%

150%

100%

PUBLIC

/
0%

Both Idle Lowest price 3rd lowest
X
% / \o
Z. g %
> 2 2
o
\ .5/ O\
AN
\7 \
/ 4- ! .
, 29 lowest price
4 8 12 16 20 24

Hour of week
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Methodological Finding: Energy and capacity bounds

of EV aggregations cannot be naively added

/ ¢ i Infeasible request
owest price *Prmax ;
200% Both Idle . ] 1 to EV2 at 2*pma 3rd lowes

150%

 Why: A fully-charged
vehicle’s ability to
increase load can be
paired with another
vehicle’s ability to accept
more charge

100%

Aggregate state of charge

29 lowest price

NN

/
0%

4 8 12 16 20 24
Hour of week

Aggregated Vehicles Charging Schedule
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Methodological Finding: Energy and capacity bounds

of EV aggregations cannot be naively added

_ Infeasible request
Loweslz‘ price to EV, at 2*Pmax  3rd Jowest
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Aggregate state of charge
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 Question: How feasible
is Direct Load Control?
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Analysis Approach

Nodal Production Cost Model with DC Powerflow

New England Dispatch Zones

Isolated ISO-NE from the Interconnection Seam Study
(SEAMS) 2038 model

Analyzed resource adequacy and determined that more
generation capacity was not needed to support additional
EV load

Determined that additional transmission capacity was
required and checked our revised assumptions with ISO-
NE

Cost assumptions from SEAMS include regionalized 2038
fuel prices from the 2017 AEO and $45/metric ton CO,
(emissions costs are included in the dispatch objective),
all in 2016$

Un-managed EV load and realizations of EVMC in the real-
time (RT) model are represented regionally and
distributed to nodes with load participation factors

EVMC DLC is modeled in the day-ahead (DA) unit
commitment (UC) model as pseudo-storages, one per
dispatch zone

The DA model with un-managed EV charging is used to
create an 8,760-hour RTP signal; Two TOU rates are
constructed to mimic the RTP: TOU-1-2 and TOU-4-4

1. Northwest Vermont

3. New Hampshire
4, Seacoast

6. Bangor Hydro
7. Portland, ME
8. Western MA

9. Springfield, MA

NE-ME {

WCMASS -[

1r - Approximate locations of
EVMC pseudo-storage units

10, Central MA + WCMASS, cont.
Lo Shoe L NEMASSBOST
13. SEMA

14. Lower SEMA } SEMASS

15. Norwalk-Stamford
16. Western CT
17. Northern CT cT

1 18. Eastern CT
# 19.Rhodelsland —— R|

Source: 150 New England



Analysis approach

Construct TOU rates for comparison to RTP and DLC mechanisms

Objective:

* Minimize difference in hourly revenue from day-ahead “real-time price (RTP)”
and TOU rate assuming load is fixed

Parameters:

* Number of seasons

* Minimum length of season (days)
* Number of blocks

 Minimum length of blocks (hours)
Methods:

e Optimization problem is a mixed-integer linear program derived by linearizing a
non-convex quadratic program—can solve for 1-2 months of data

* Initial value computed using agglomerative clustering—can be computed for
the whole year and in test problems (1-2 months) results in a better objective
value than the “optimal” solution

PUBLIC
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Tests show naive aggregation produces highly

infeasible charging flexibility requests

Legend
Pmax: upward charging flexibility in
each time period
PmMin: downward charging flexibility
in each time period
Smin: max quantity of deferred load
in each time period

Red: Revenue under feasible re-
dispatch to individual EVs

Revenue if aggregate request
was fulfilled

A‘* Three different objectives

Net Revenue ($)

lllustrative results

Impossible to do better than [~
|nd|V|duaI max by definition 7

[ Max net revenue from

individual vehicle In practice, even _
flexibility more infeasibility

“Naive aggregation” *
PMax=100%, PM"=100%, S™"=100%

Error (%) wReL | 27



Feasible redispatch of aggregate managed EV

resource requires scaling power and energy bounds

Legend
Pmax: upward charging flexibility in
each time period
PmMin: downward charging flexibility
in each time period
Smin: max quantity of deferred load
in each time period

Red: Revenue under feasible re-
dispatch to individual EVs

Revenue if aggregate request
was fulfilled

A‘* Three different objectives

Net Revenue ($)

lllustrative results

Max net revenue from

‘ “Highest Net Revenue”
Pmax=50%, PMin=50%, SMn=100%

A “Low Error”

Pmax=50%, Pmin=50%, SMin=50%
\. _ Finding: Feasible EV redispatch requires

scaling key parameters

PUBLIC

Error (%)
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A n G/ySIS Appl’OGCh Simply Summing !Dower and .En.e:'rgy Bounds
Dee p d ive | nto agg regat Tela Overestimates Flexibility

e price

Price ($/MWh)

Dispatch Individual Vehicles within Power and
Energy Envelopes 270 280 290 300 310 320 330

Hour of Year
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— ]
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s 80 8 20
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8 60 g 10
& A I 8 0
> e |mmediate (S1) \— I a
i 40 . e . =N T ¥ -10
= Optimal within-session (Ss) A Y N I 270 280 290 300 310 320 330
——— Optimal within-week (Sy) 1 I Hour of Year
20 _ Delayed (S5 s) ‘_ ____] @ss» Optimal Individual Dispatch e Quter Approximation Upper Bound
MinCharges & Delayed (S5 w) Optimal Outer Approximation Dispatch = Quter Approximation Lower Bound
- 2, W,
O o 25 50 75 100 125 150 175 £° N\ = ~—
-5
Hour of Week (June) = . AN \/ \\’
= X
©-15
£ 2 : \.
O
- —25
()
= -30
()
D 35
o -40
270 280 290 300 310 320 330
Hour of Year
em=» Optimal Individual Charge Deferral e Quter Approximation Lower Bound

Optimal Outer Approximation Charge Deferral
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Analysis Approach

Deep dive into aggregation

. Approx Overestimated Savings Start & Shutdown Cost

. . Cost Type:
* Performed disaggregation YPS [ Fuei cost B vosm cost
experiments to
— Estimate scaling parameters Unmanaged EVs Managed EVs

that produce “low error (LE)” or
“maximum revenue (MR)”

— Estimate to what extent each
“scaled outer approximation”
overpredicts value

e Result of applying overestimated
savings results from price-taking
experiments to production cost
simulations shown here

* The report mostly focuses on DLC-
LE results, because the reported
performance should be feasible and
accurate without scaling

e DLC-LE scales all parameters by
50%; real-world aggregation should

1500 -

TN
o

T
W
o

1000 ~

T
N
o

500 ~

o
(a191yan/g) sbuiaeg 1s09 uoionpoad

Total Production Cost (Million $)

be able to achieve more cost 0- L0
savings/revenue (e.g., compare —-W : : : : : .
(LE) to =W (MR) in this plot) 100% b2, 490% Dz 3%0% D7, 3%0% Dz.,1%0% Dz /0%

g 2. 2. Dz.
S(tg) S mr) =S (04) W (g MR, I/'/(O"‘) NREL | 30
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. 10000 amp Penalty ($
Anal ysis App roach | e Lnmenaged (Baes)
’g 8000 0
L] [ ] [ ] [ ] L] E
Testing the Limits of Price-taking e
. . . E 4000
* Price-taking approaches are simpler than DLC, and 2
O
let vehicles respond directly with their full flexibility 2 2% B
. . 0 -
¢ Howeverl too mUCh erXIbIe EV Ioad ChaSIng the same Jan. 05,00 Jan.05,10 Jan.05,20 Jan.06,06 Jan.06,16 Jan.07,02 Jan.07,12 Jan. 07,22
prices eliminates old, but creates new, price spikes Fm ey s
& Unmanage ase —
. 15.0
* Applying a penalty to aggregate ramps mutes S N
response %10_0
* Simply muting response is not a sufficient strategy 5 "
. « . . u 50
at moderate to high participation rates 5 . m
Table 7. Optimal Ramp Penalties for the Price-taking Dispatch Mechanisms that Re- 00jan. 5,00 Jan.5,10 Jan.520 Jan.6,06 Jan.6,16 Jan.7,02 Jan.7,12 Jan.7,22
duce Production Costs by at Least $1/vehicle-yr. Combinations that do not yield suf-
ficient production cost savings for any value of ramp penalty are indicated with dashes. 150 @ Unmanaged (Base) Ra_mp 'Z,e”a“ﬂ“”fﬁ,?,’ — 500 —— 1000
Participation ~ Within-session Within-week 312'5 N
(%) RTP TOU-4-4 TOU-1-2 RTP TOU-4-4 TOU-1-2 g 100
;‘ 75
5 1 10 I 10 10 I 5o
30 100 100 - - - - g 2s
: 2}
60 - - - y - - 0.0
1{}0 i i i 4 i i Jan.5,00 Jan.5,10 Jan.5,20 Jan.6,06 Jan.6,16 Jan.7,02 Jan.7,12 Jan.7,22
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Analysis Approach

Capacity value

Previous work (Stephen, Hale, and
Cowiestoll 2020; Jorgenson et al. 2021)
identified average MW reduction of the top
100 net-load hours as a reasonable heuristic
for firm capacity

Capacity value is monetized using the 2021
Cambium data set, specifically 2038 ISO-NE
capacity prices under the Mid-case 95%
decarbonization by 2035 and by 2050
scenarios

On average, unmanaged EV load adds 1,620
MW to the top 100 hours of net-load in this
system

DLC-LE EVMC with 100% participation
reduces that amount by about half

N
N
o

N
o
o

ISO-NE Net Load (GW)
o N
o o

—
N
o

== 100% DZ-S (LE) == 100% DZ-W (LE)

Scenario: . NoEvs == Unmanaged EVs
‘ﬁ_ﬁ
25 5b 75 100

Hours of Year (Ordered)

NREL |
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