
BETTER LIVING 
THROUGH SBOMS!

Tom Alrich
RF Tech Talk

March 21, 2022



PUBLIC

What’s an SBOM for?
◦ I’m sure your children have all asked you this question at one 
time or another.
◦You might tell them that, if they had a software bill of materials 
for each of the video games they run, they might know which 
games contain Log4j.
◦ If a game does contain Log4j, they might not want to use it 
until the developer provides a patch.
◦ In general, an SBOM is a machine-readable list of the 
components in a software product. 



PUBLIC

Components – why are they a big deal?
◦ Why do software developers use components? Because they save 

the developer a huge amount of time (which = money, by the way).
◦ For example, Log4j performs logging functions for software. All 

software needs logging, but it would take a lot of time for a 
developer to write this code. The developer can download Log4J 
for free and insert it in their software. Then they’ll have logging!
◦ The average software product has 135 components. Many 

products have thousands of components. 90% are open source.
◦ In some software products, more than 90% of the code is 

components. You could say the developer’s job nowadays is just 
tying components together to make a new product. 



PUBLIC

Where do SBOMs come from?
◦ It’s up to the software developer to develop SBOMs and 
distribute them to their customers. Most developers are 
producing them now for internal use, but they’re not 
distributing them.
◦ Last May, President Biden issued Executive Order 14028 
regarding cybersecurity in the federal government. One of the 
requirements was that all agencies request SBOMs from their 
software suppliers. Compliance is due this August. 
◦Even though the EO only applies to the government, it’s likely 
that SBOMs will become a quasi-requirement for all software, 
no matter who it’s sold to.



PUBLIC

Machine readability
◦Because of the huge (and growing) number of components in 
software today, it’s impossible for a user to track all of the 
component vulnerabilities themselves. 
◦ This is why SBOMS come in two machine-readable formats: 
SPDX and CycloneDX. With the right tool, you’ll be able to 
“read” SBOMs and find, using the NVD, a list of vulnerabilities 
that apply to the components, then pass it on to tools for 
configuration or vulnerability management.
◦One open source tool that does that now is Dependency-
Track. You load an SBOM and then see all the vulnerabilities 
that apply to components. Plus, D-T will track new 
vulnerabilities for components as they’re identified (D-T only 
reads CycloneDX SBOMs).



PUBLIC

How could SBOMs help with Log4j?
◦The most important use case for SBOMs is software 
vulnerability management. When a serious vulnerability is 
found in a component like Log4j, SBOMs will help you 
identify where that component is found in your network.
◦But even when there’s not a high-profile vulnerability, a 
software user should track at least high and critical 
component vulnerabilities in their software and contact 
their suppliers to find out when they’ll patch them.



PUBLIC

VEX
◦ One of the biggest problems facing SBOMs is that a huge 

percentage (perhaps 90% or even more) of component 
vulnerabilities aren’t in fact exploitable in the final product. So, if 
Dependency-Track lists 20 component vulnerabilities in a product, 
18 or 19 of them might not be exploitable.
◦ This is good news, except you need to know which component 

vulnerabilities are exploitable and which aren’t. To do this, a 
supplier will issue a different machine-readable document, called a 
VEX (Vulnerability Exploitability eXchange). 
◦ Your tool will need to process both SBOMs and VEXes. That way, 

you’ll only see vulnerabilities that are exploitable – i.e., the 5% you 
should care about, not the 95% that you shouldn’t care about.



PUBLIC



PUBLIC

What should you do about exploitable 
component vulnerabilities?

◦Very few software users can patch vulnerabilities in the 
software they use – the supplier has to do that for you. 
What you can (and should) do is contact the supplier 
when you learn about a serious exploitable component 
vulnerability and ask when they’ll patch it.
◦You can also try to include contract language saying that, 
for any serious component vulnerability that is 
exploitable, the supplier will develop a patch within X 
business days (X is up to you. 5? 10? Certainly not 60…).



PUBLIC

How can SBOMs help with procurement?
◦ When you’re buying software, SBOMs can help you in two important 

ways. You should always request a recent SBOM for any product you’re 
considering purchasing, as well as any VEXes that apply to it. You should 
ask the supplier to list all current open exploitable vulnerabilities for 
components. If they won’t or can’t give you an SBOM, that could be a 
strike against them in your evaluation.
◦ If there are any open serious exploitable component vulnerabilities, you 

should require in contract language that they be patched soon after the 
contract is signed. 
◦ You can also ask questions like, “Are there any components in the 

product that are more than – say – 3 or 4 versions behind the current 
version?” or “Are there any components that are in end-of-life status?”



PUBLIC

<?xml version="1.0" encoding="utf-8"?>
<bom xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b71" version="1"
xmlns="http://cyclonedx.org/schema/bom/1.3">
<metadata>
<authors>
<author>
<name>Acme</name>

</author>
</authors>
<component type="application">
<name>Application</name>
<version>1.1</version>
<hashes>
<hash alg="SHA-1">75068c26abbed3ad3980685bae21d7202d288317</hash>

</hashes>
<cpe>cpe:2.3:a:acme:application:1.1:*:*:*:*:*:*:*</cpe>
<externalReferences />
<components />

</component>
<manufacture>
<name>Acme</name>

</manufacture>
<supplier>
<name>Acme</name>

</supplier>
</metadata>
<components>
<component type="library" bom-ref="pkg:maven/org.bob/browser@2.1">

<publisher>Bob</publisher>
<group>org.bob</group>
<name>browser</name>
<version>2.1</version>
<hashes>
<hash alg="SHA-1">94568c26abbed3ad3980685deaf1d7202d268314</hash>

</hashes>
<cpe>cpe:2.3:a:bob:browser:2.1:*:*:*:*:*:*:*</cpe>
<purl>pkg:maven/org.bob/browser@2.1</purl>

</component>



PUBLIC

<component type="library" bom-ref="pkg:maven/org.carol/CompressionEng@3.1">
<publisher>Carol</publisher>
<group>org.carol</group>
<name>CompressionEng</name>
<version>3.1</version>
<hashes>
<hash alg="SHA-1">63568c26aebad3ad398bb85ce1f1d7202d27731a</hash>

</hashes>
<cpe>cpe:2.3:a:carol:compression_eng:3.1:*:*:*:*:*:*:*</cpe>
<purl>pkg:maven/org.carol/CompressionEng@3.1</purl>

</components>
<dependencies>
<dependency ref="pkg:maven/org.bob/browser@2.1">

<dependency ref="pkg:maven/org.carol/CompressionEng@3.1" />
</dependency>
<dependency ref="pkg:maven/org.bingo/buffer@2.2" />

</dependencies>
<compositions>
<composition>
<aggregate>complete</aggregate>
<assemblies>
<assembly ref="pkg:maven/org.carol/CompressionEng@3.1"/>

</assemblies>
<dependencies>
<dependency ref="pkg:maven/org.carol/CompressionEng@3.1"/>

</dependencies>
</composition>
<composition>
<aggregate>unknown</aggregate>
<assemblies>
<assembly ref="pkg:maven/org.bingo/buffer@2.2"/>
<assembly ref="pkg:maven/org.bob/browser@2.1"/>

</assemblies>
</composition>

</compositions>
</bom>



PUBLIC

How can SBOMs help in CIP-013 compliance?
1. CIP-013 requires you to “identify, assess and mitigate” supply chain 

cybersecurity risks to the Bulk Electric System (BES).
2. Probably the biggest such risk nowadays – along with ransomware – is 

software supply chain security risks. Think SolarWinds.
3. Since about 90% of the code in a software product nowadays consists 

of components, it follows that about 90% of software supply chain risk 
is due to components.

4. Without an SBOM, you’re entirely dependent on your supplier to tell 
you what the component risks are in their software – since you have no 
idea what components are in there otherwise.

5. Ergo, you need SBOMs, regularly updated. 
6. See Fortress Information Security’s white paper on SBOMs and 

compliance (link on next slide).



PUBLIC

Thank you!
Tom’s blog: https://tomalrichblog.blogspot.com/

Tom’s email: tom@tomalrich.com

To join CISA SBOM list: sbom@cisa.dhs.gov

SBOMs and Compliance paper: https://www.fortressinfosec.com/en-
us/enhancing-cybersecurity-best-practices-with-sbom

Dependency-Track: https://dependencytrack.org/

https://tomalrichblog.blogspot.com/
mailto:tom@tomalrich.com
mailto:sbom@cisa.dhs.gov
https://www.fortressinfosec.com/en-us/enhancing-cybersecurity-best-practices-with-sbom
https://dependencytrack.org/

	Better living through SBOMs!
	What’s an SBOM for?
	Components – why are they a big deal?
	Where do SBOMs come from?
	Machine readability
	How could SBOMs help with Log4j?
	VEX
	Slide Number 8
	What should you do about exploitable component vulnerabilities?
	How can SBOMs help with procurement?
	Slide Number 11
	Slide Number 12
	How can SBOMs help in CIP-013 compliance?
	Thank you!

