
W H Y A R E  W E  H E R E

Th o m a s  Te a f a t i l l e r,  Pr i n c i p a l  E n g i n e e r, 

E n g i n e e r i n g  a n d  S y s t e m  Pe r f o r m a n c e

Aug. 7, 2024

RF Protection System Workshop



 Review RF misoperation performance

across the Electric Reliability Organization

(ERO) Enterprise

 Analyze the misoperation performance of

RF in 2023 and discuss performance trends

 Provide update on capacitor misoperations

 Analyze human performance misoperations
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E L E C T R I C  R E L I A B I L I T Y
O R G A N I Z AT I O N

• ERO consists of NERC

and six (6) Regional

Entities

• Regional Entities are the

Compliance Enforcement

Authority (CEA) for their

respective footprints
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S U M M A R Y
• RF misoperation rate had been on a downward trend in recent years, but 2023

rates returned to the 2021 rates near 8%

• RF misoperation counts have continued their overall downward trend

• Both GO and TO misoperation rates have continued downward

• Capacitor bank misoperations have increased in 2023, we will watch how this

trends going forward

• Incorrect setting misoperations have been on a downward trend since 2021,

design errors have been on an upward trend during that same time period



Technical Talk with RF
• Save the date for our next event:

Monday, Aug. 19, 2-3:30 p.m.

• August’s Tech Talk will be an “un-Tech
Talk,” as we delve into the human
performance side of electric grid
reliability – see our website for more
details.

No Registration Required
Calendar Reminder

https://www.rfirst.org/event/technical-talk-with-rf-21/
https://rfirst.org/eventdetail?EventId=260


Fall Reliability & Security Summit 2024
Monday, Sept. 16, 5-8 p.m. 

Tuesday, Sept. 17, 8:30 a.m. – 5 pm

Wednesday, Sept. 18, 8:30 a.m. – 1 p.m.

Location: Conrad Indianapolis Hotel,

50 W. Washington St., Indianapolis, IN 46204

Join RF in Indianapolis for the 2024 Fall Reliability & Security Summit. We’ll dive into the 
intersection of energy policy with reliability and security, as we navigate the challenges of a 
changing generation mix. Find additional agenda details and registration information on the 
event page on our website.

Please encourage your coworkers, staff, and stakeholders to sign-up to attend.

REGISTRATION LINK

https://www.rfirst.org/event/fall-reliability-and-security-summit/
https://www.eventbrite.com/e/2024-reliabilityfirst-fall-reliability-and-security-summit-tickets-888466355787


QUESTIONS & 

ANSWERS

Thomas Teafatiller

Thomas.Teafatiller@rfirst.org
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Automated Solutions and Remote 
Settings Changes - AEP’s Approach 

to Implementing PRC-027-1
Jeff Iler and Nelson Doe
American Electric Power
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AEP Serves 5.5 million Customers 
in 11 States
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AEP’s PRC-027 Applicable Lines
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NERC Standard PRC-027-1
Purpose: To maintain the coordination of Protection Systems 
installed to detect and isolate Faults on Bulk Electric System (BES) 
Elements, such that those Protection Systems operate in the 
intended sequence during Faults.
Requirement R2 Each Transmission Owner, Generator Owner, 
and Distribution Provider shall, for each BES Element with 
Protection System function identified in Attachment A:
• Option 1: Perform a Protection System Coordination Study in a 

time interval not to exceed six-calendar years (4/1/2027) ; or
• Option 2: Compare present Fault current values to an 

established Fault current baseline and perform a Protection 
System Coordination Study when the comparison identifies a 
15 percent or greater deviation in Fault current values (either 
three phase or phase to ground) at a bus to which the BES 
Element is connected, all in a time interval not to exceed six-
calendar years; or,

• Option 3: Use a combination of the above.



Limited Disclosure 

PRC-027 Attachment A
Attachment A
The following Protection System functions are applicable to 
Requirement R2 if: (1) available Fault current levels are used to 
develop the settings for those Protection System functions; and 
(2) those Protection System functions require coordination with 
other Protection Systems. 
21 – Distance if:
• infeed is used in determining reach (phase and ground 

distance), or
• zero-sequence mutual coupling is used in determining reach 

(ground distance).
50 – Instantaneous overcurrent
51 – AC inverse time overcurrent
67 – AC directional overcurrent if used in a non-communication-
aided protection scheme
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Option 1 or Option 2? 

Option 1:
• Ensures that Protection Systems are coordinated
• Potentially reduces misoperations caused by 

incorrect relay settings
• May be more costly and time consuming than 

Option 2
Option 2:
• Protection Systems must be coordinated before 

setting a baseline
• May be less resource intensive than Option 1
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What is a Protection System 
Coordination Study?

An analysis to determine whether Protection Systems 
operate in the intended sequence during Faults. 

The standard does not prescribe reach margins, 
pickup margins, or coordination time intervals; it 
allows Transmission Owners to define coordination 
criteria based on their own philosophy



Limited Disclosure 

AEP’s Coordination Study
21 – Distance
• Zone 1 reach < maximum value
• Zone 2 reach > minimum value
• Zone 2 reach coordinates with Zone 1 relays on downstream

lines
• Zone 3 reach coordinates with Zone 2 relays on downstream

lines
50 – Instantaneous overcurrent
• Instantaneous Elements have adequate margin for remote 

bus fault 
51/67 –AC overcurrent
• Minimum pickup for line end fault
• Minimum pickup for line end fault with single contingency

source outage



Limited Disclosure 

AEP’s Coordination Study

• Coordination checked at the end of the 
instantaneous zone to determine coordination time 
interval (CTI)

• Distance and overcurrent checked together – CTI is 
based on fastest relay function

• Additional check using Aspen OneLiner - Relay 
Operations Using Stepped Events
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Initial 765kV Area Study

In 2019 AEP Studied our 765 KV System
• 34 lines, 66 line terminals studied
• ASPEN OneLiner coordination Checking Tools 

were used
Coordination Errors Identified:  
• 9 issues that could result in a misoperation 

(Instantaneous Overcurrent)
• 32 other issues – outside AEP’s setting 

criteria
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Initial 765kV Area Study

• Reviewed and updated all 765kV line settings (not 
just attachment A) 

• Opportunity taken to update settings up to AEP’s 
latest guidance

• Directional elements
• Add a time delay to the DCB ground overcurrent 

function
• Disabling phase instantaneous overcurrent 

elements 
• Setting revised for 56 line terminals (112 digital 

relays) 
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Why AEP Selected Option 1?

Based on 765kV study results Option 1 was 
selected
• Achieve reliable system protection by ensuring 

all relays are properly coordinated 
• Significantly reduce, and potentially eliminate, 

misoperations caused by outdated and incorrect 
settings

• Provides opportunity to go above PRC-027 R2 
requirements and review and update all 
protective functions
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Lessons Learned from Initial 765KV 
Study

1. Updated the philosophy for setting ground 
overcurrent backup protection

2. Automated the development of relay settings
3. Adjusted criteria for Protection System 

Coordination Studies 
4. Automated the execution of Area Protection 

System Coordination Studies
5. Began remotely applying relay settings
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Updated the Philosophy for Setting 
Ground Overcurrent Backup Protection

Initial study identified 
GOC settings as leading 
cause of coordination 
errors 
• Disable ground 

instantaneous function
• Slow down time 

overcurrent function
• Allow ground distance 

to operate first 
• GTOC expected to 

operate for high 
impedance faults when 
pilot system it out of 
service
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Automated Relay Setting Development

• Automated Relay Settings (ARS) developed by 
Utility Automation Solutions (UAS)

• ARS was initially used for the 765kV PRC-027 
settings – 56 line terminals
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ARS Calculation Sheet
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ARS UI for Updating Setting Files
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Adjusted Criteria for Protection 
System Coordination Studies
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Automated the Execution of Area 
Studies

ARS has a module that will:
1. Automatically perform all coordination checks
2. Study multiple lines at one time
3. Output easily identifies where errors exists
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ARS - Check Line Protection

• List of lines to be studied is needed
• AEP system divided into 87 groups
• Each groups contains about 20-25 lines
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ARS - Check Line Protection

• A summary sheet is 
produced showing 
each terminal that 
was checked

• The results of each 
element checked is 
shown

• This make is easy to 
determine which 
terminals have 
issues
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ARS - Check Line Protection

• Individual check sheet is created for each terminal
• Provides details for each check
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Remote Application of Relay Settings

PRC-027 required a new approach to implement 
settings
• Procedure developed for remote application of
settings
• Criteria created for settings than can be applied 
remotely
• Setting changes excluded are:

• Critical interconnects; CT ratio, I/O, firmware, trip logic
• Procedure piloted on AEP’s initial 765kV area study
• 55 settings were applied remotely without incident
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Study Process
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345kV Studies

• 16 groups studied late 2021 thru 2022
• 399 revised settings, 107 did not need reset
Lessons Learned from 345kV Studies
• Interconnects – defer if possible 
• Complete PRC-027 Settings as part of capital 

projects 

Lines Terminals Interconnections

336 506 177
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161kV and 138kV Studies
Lines Terminals Interconnections

1642 3020 366

• 70 groups, planned to complete 1/3 each 
year 2023-2025 (15 months margin)

• Estimated 45% of these will be or have been 
completed on capital (20% for 345kV)

Line Terminals 
Studied (7/31/2024)

PRC-027 Specific 
Setting 

Capital Project % O&M 
Expense

967 512 455 53

• Plan revised based on 2023 progress
• Completion Q2 2026 (9 months margin)
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Remote Application of Relay Settings
• 31% of settings meeting criteria have been applied 

remotely
• Percentage should increase as personnel become 

comfortable with process
• Estimated time saving – 4 hours per relay, 8 hours 

per terminal 

Settings Meet 
Criteria for Remote 
Application?

Settings 
Applied at 
Station

Settings 
Applied 
Remotely

No – 454 454
Yes – 512 353 159
Total – 966 807 159
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Challenges

• System is continually 
changing

• List of line terminals must be 
kept up to date

• Short circuit models must be 
kept up to date

• Budgets and projects 
schedules constantly changing

• Process must be reviewed 
and adjusted
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Conclusion
• The initial round of studies is costly and time 

consuming
• End-result:

• Assures all line protection is coordinated 
• All line protection updated to latest guidance 
• Settings more resilient as system change
• Misoperation caused by relay settings significantly 

reduced
• Process ensures system will remain coordinated in 

the future 
• Future studies will be performed more frequently 

then 6 years
• Automated tools are essential to using Option 1!
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Questions ?



Limited Disclosure 

Managing System Oscillations in the 
ERCOT System
 
  
Yunzhi Cheng 
Manager of Operations Stability Analysis, ERCOT 
Co-Chair of IEEE IBR SSO Taskforce

RF PF Workshop

August 7, 2024 
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OUTLINE

• Introduction to IBR SSO 
• About ERCOT and ERCOT IBR SSO Events
• ERCOT’s Efforts to manage the IBR SSO

– MQT (model quality test) – Planning
– Large scale PSCAD simulation – Planning 
– GTC (generic transmission constrain) – Operations 
– WSCR (weighted short-circuit ratio) – Planning & Operations 
– GFM (grid-forming) – Planning & Operations 
– Synchronous Condenser & Series Capacitor – Planning & Operations

2



Limited Disclosure 

IEEE IBR SSO Taskforce

https://sites.google.com/view/ibrsso/home

https://sites.google.com/view/ibrsso/home
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IBR SSO

4

IB
R

 S
SO

Series Capacitor + Type 3 WTG

High Penetration of IBRs in Weak 
Grid

Y. Cheng et al., "Real-World Subsynchronous Oscillation Events in Power Grids with High Penetrations of Inverter-Based Resources," in IEEE 
Transactions on Power Systems, 2023

Typical Example: 2009 South Texas SSCI Event

Typical Example: 2015 Northwest China SSO Event
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Some Reported IBR SSO Events 

5

Y. Cheng et al., "Real-World Subsynchronous Oscillation Events in Power Grids with High Penetrations of Inverter-Based Resources," in IEEE 
Transactions on Power Systems, 2023

Year Location Frequency (Hz) Mechanism
2021 Scotland 8 Offshore WTG + Weak grid (?)

2020 – 2021 West Murray, Australia 15 – 20 IBR + Weak grid (?)

2019 Great Britain 9 Offshore WTG + Weak Grid  

2015 – 2019 West Murray, Australia 7 IBR + Weak Grid

2017 First Solar, USA 7 Solar PV + Weak Grid

2015 Northwest China 27 – 34 Type 4 WTG + Weak Grid

2015 Hydro One, Canada 20 Solar PV + Weak Grid

2011 Texas, USA 4 Type 4 WTG + Weak Grid

2023 South Texas, USA 20 – 30 Type 3 WTG + Series Cap.

2017 South Texas, USA 20 – 30 Type 3 WTG + Series Cap.

2012 – 2016 North China 3 – 12 Type 3 WTG + Series Cap.

2009 South Texas, USA 20 – 30 Type 3 WTG + Series Cap.
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The ERCOT Region 

6

The interconnected electrical system 
serving most of Texas, with limited 
external connections

• 90% of Texas electric load; 75% of Texas 
land 

• 85,508 MW peak, August 10, 2023
• More than 54,100 miles of transmission 

lines
• 1250+ generation units (including PUNs)

ERCOT connections to other grids 
are limited to ~1,220 MW of direct 
current (DC) tie capacity
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ERCOT Quick Facts
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More than
26 million 
cus tomers  in 

the ERCOT 
region

85,508 MW
Record peak demand 

(Augus t 10, 2023, 5-6 pm)

85,116 MW
Weekend peak demand record 

(Augus t 20, 2023, 4-5 pm)

90% of Texas  Load

75% of load is  competitive choice 
cus tomers

1 MW of electricity can power about 200 
Texas  homes  during periods  of peak 
demand

1,873+
active market participants  that 
generate, move, buy, s ell or us e 
wholes ale electricity

98,000+ MW
of expected capacity for 
s ummer 2023 peak demand

1,100+
generating units , including 
PUNs
52,700+
miles  of high-voltage 
trans mis s ion

$3,3 billion
trans mis s ion projects  
endors ed in 2022

27,548 MW
Wind generation record 

(J an. 7, 2024)

13,944 MW
Solar generation record 

(Dec. 29, 2023)

37,725 MW
of ins talled wind capacity

69.15%
Wind penetration record 

( April 10, 2022, 1 am)

17,040 MW
of ins talled s olar capacity

32.93%
Solar penetration record 
(April 30, 2023, 10 am)
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ERCOT Wind Additions by Year
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ERCOT Solar Additions by Year
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ERCOT Battery Additions by Year
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25,000  MW

30,000  MW

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Cumulative MW Operational IA Signed-Financial Security Posted
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ERCOT IBR Growth

11

As of June 2024

ERCOT could exceed 
100 GW IBRs 
connection by 2025. 
Further growth is also 
projected based on the 
current ERCOT 
resource capacity trend.

https://www.ercot.com/gridinfo/resource 

https://www.ercot.com/gridinfo/resource
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Weak Grid related SSO Event in ERCOT 
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• Local SSO event in 2011
• Undamped oscillation (~4 Hz) was observed at high wind speed 

with the line of Bus 5 – 6 in outage (SCR dropped to 2)

Reference: Shun-Hsien (Fred) Huang, etc.,  “Voltage Control Challenges on Weak Grids with High Penetration of Wind Generation: 
ERCOT Experience”, 2012 IEEE PES GM 
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Model Quality Test (MQT)

13

• System Strength (SCR) Test with minimum requirement of SCR = 1.5
• DMView tool for PSS/e available at 

https://sites.google.com/view/dmview/home
• PMView tool for PSCAD available at 

https://sites.google.com/view/pmview/home

Flat Start Voltage 
Response

Frequency 
Response

System 
Strength

 

9 - VARS360881[UNIT1_G     0.6900]W1 : VESTAS_WF_TEST6_SCR_SCR_SMALL_1.0_small
9 - VARS360881[UNIT1_G     0.6900]W1 : VESTAS_WF_TEST6_SCR_SCR_SMALL_1.2_small
9 - VARS360881[UNIT1_G     0.6900]W1 : VESTAS_WF_TEST6_SCR_SCR_SMALL_1.5_small
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Large Scale PSCAD Simulation 
• 2020 Panhandle Study (PSS/e & PSCAD) 

– 46 IBR projects (>10GW)

– 43 PSCAD cases created for parallel simulation

– ETRAN Plus tool is used for PSCAD parallel simulation 

– For the stable scenarios, the overall performances from PSCAD simulations were 
consistent with that from PSS/e simulations

– PSCAD studies are necessary to evaluate potential control stability issues

14

“2020 Panhandle Regional Stability Study, available at ”https://www.ercot.com/files/docs/2020/11/27/2020_PanhandleStudy_public_final__004_.pdf
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GTC (Generic Transmission Constrain)

• A Generic Transmission Constraint 
(GTC) is a tool that ERCOT uses to 
manage stability limitations (including 
weak grid related SSO) in real-time 
operations.

• ERCOT has seen an increase in 
stability constraints in recent years, 
particularly in West Texas and South 
Texas, which has led to an overall 
increase in the number of GTCs.

• Most of GTC are based on off-line 
PSS/e dynamic simulation. ERCOT is 
in the process of implementing real-
time stability assessment tool (TSAT) 
to identify and determine the proper 
stability constraints based on the real 
time system conditions. Damping 
ratio is one of criteria for the stability 
assessment. 

15
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System Strength (Weak Grid) and WSCR
• System strength identified in the simulation of Panhandle area 

– Far away from load centers

– No synchronous generators

– No Load 

– All the resources are IBRs (~5GW)

• Two synchronous condensers (175MVA each) were added to Panhandle in 2018

• ERCOT proposed the concept of WSCR (Weighted Short Circuit Ratio) to measure 
the Panhandle system strength based on actual output of the Panhandle IBRs

• WSCR=1.5 was proposed as the minimum pre-contingency system strength and 
implemented in real time operations to limit the Panhandle IBRs output based on 
the system strength 

• WSCR index was retried in 2021 with transmission system upgrade in Panhandle 

16

Y. Zhang, etc., “Evaluating System Strength for Large-Scale Wind Plant Integration,” in Power and Energy Society General Meeting, 2014 IEEE

Panhandle
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Grid Forming 

17

• NERC definition: GFM (Grid Forming) IBR controls 
maintain an internal voltage phasor that is constant 
or nearly constant in the sub-transient to transient 
time frame. This allows the IBR to immediately 
respond to changes in the external system and 
maintain IBR control stability during challenging 
network conditions. The voltage phasor must be 
controlled to maintain synchronism with other devices 
in the grid and must also regulate active and reactive 
power appropriately to support the grid
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Grid Forming vs Grid Following

18

https://www.nrel.gov/docs/fy20osti/75848.pdf

https://www.nrel.gov/docs/fy20osti/75848.pdf
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Grid Forming 

19

• ERCOT contracted Electranix in late 2023 to help 
recommend the required IBR advanced grid support 
capability and test framework 

• ERCOT also reached out to major IBR OEMs to 
understand the existing and potential advanced grid 
support capability (like GFM) 
– OEMs for inverter-based ESRs, including Tesla, SMA, 

Sungrow, and Power Electronics, shared their  GFM BESS 
models to support this project

– OEMs for wind and solar currently don’t have commercially 
available product    

https://www.ercot.com/files/docs/2024/07/09/2024_07_ERCOT_IBRWG_ERCOT%20Advanced%20Grid%20Support%20Inverter-
based%20ESRs%20Assessment%20and%20Adoption%20Discussion_v1_.pdf
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Grid Forming 

20

• ERCOT plans to propose standards for GFM inverter-
based Energy Storage Resources (ESRs)
– Voluntary first; mandatory for new inverter-based ESRs at a 

near future date 
• Inverter-based ESRs are commercially available today 

to provide advanced grid support; and generally, only 
require software/control changes with no impact to the 
hardware or commercial operations 

• ERCOT’s preliminary assessments have identified the 
improvement of system stability performance and the 
benefits to the generic transmission constraints (GTCs)

https://www.ercot.com/files/docs/2024/07/09/2024_07_ERCOT_IBRWG_ERCOT%20Advanced%20Grid%20Support%20Inverter-
based%20ESRs%20Assessment%20and%20Adoption%20Discussion_v1_.pdf
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Six Synchronous Condensers (SynCons) in WTX
• A total of six new SynCons (2100MVA) were identified to 

increase the system strength of WTX (>40GW IBRs)
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22

Oersted (x2) & Edison (x2) 

Kirchhoff (x2) 

Gauss (x2) 

Cross (x2) 

Romney (x2) & Kopperl (x2) 

Cenizo (x1)  / Del Sol (x1) / 
Rio Hondo / (x1) 

North Edinburg (x1) 

Series Capacitors in ERCOT
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• Series capacitors installed on 
long 345 kV line in South Texas.

• A cluster of wind farms (DFIG) 
connected to Ajo.  

• In 2009, a fault caused LonHill –
Ajo line to trip, leaving wind 
radially connected to series caps.

• Very high currents resulted in 
damage.

Lon Hill

Ajo

Rio 
Hondo

South Texas 2009 Event
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American Electric Power’s Experience 
with Protection System Misoperations 

and Improvements

Ross D. Stienecker
(American Electric Power)



Introduction

• AEP Key Statistics:
– 16,800 employees
– 5.5 million regulated customers
– 30,000 MW generation capacity
– 40,000 miles of transmission line (including 765kV)
– Operates in 11 different states
– Headquartered in Columbus, Ohio



AEP Transmission Network



AEP Regional Entities



New Technologies



Grid Transformation



Challenges

• Protection system technology changes
• Decentralized renewable generation
• Inverter based generation vs traditional inertia
• Younger experience level in the industry
• Large capital investment workplans
• FACTs transmission devices (series capacitors, 

SVCs, PSTs, etc…)



Reliability

• All these challenges lead to increased 
complexity which if not properly accounted 
for can lead to protection system 
misoperations

• Misoperations are a key risk to the Bulk 
Electric System’s (BES) reliability

• AEP has a goal of ZERO protection system 
misoperations



Path to Zero Misoperations

• Leverage automation

• Embrace industry best practices

• Simplify protection and control schemes 

• Incorporate lessons learned from system 
misoperations into key engineering processes



Identifying Misoperations

• AEP has a separate team outside of 
engineering (TFS P&C) that first reviews the 
operation

• TFS P&C reviews all available data
• If an operation is determined a misoperation, 

then engineering (PCE) gets involved



Cause Identification

• A group of experienced technical engineers 
representing all regions and departments of 
PCE meet to analyze the event

• Very important to find the true root cause so 
that the appropriate corrective action plan 
(CAP) can be developed (ex: Z1P overreaches; 
is setting bad or is model bad)

• The formal group setting helps raise 
awareness



Corrective Action Plan

• Develop a CAP
• Implement CAP within 2 

weeks (avoid repeats)
• Express Settings when 

applicable
• Prioritize model 

verification



Assessing Applicability

• Group determines if 
misoperation is isolated 
event

• Does CAP have applicability 
to other protection systems

• If so, filter and define list of 
affected assets

• Create mitigation project 
(proactive way to reduce 
risk & prevent future 
misoperations)

• Express Settings method 
speeds up mitigation



Modelling

• Formalized how power 
elements such as lines and 
transformers are modelled

• Dedicated short circuit 
modelling group

• Modelling process includes 
a peer review before given 
to engineering

• All settings work requires a 
verified model even if an 
existing asset and no 
planned changes



Formalized Settings Peer 
Reviews

• Human error is a top driver of settings related 
misoperations

• Peer review adds extra layer of protection
• Past reviews were not performed consistently and not 

well documented
• Have a peer review process document, defines 

expectations
• Review is now integrated with setting issue workflow
• BES line settings need reviewed by qualified peer 

reviewer



Formalized Settings Peer 
Reviews

• Reviews are stored electronically, and 
reviewer name is included

• Instituted a Line Settings Robust Checklist
• This checklist includes items that may often 

get overlooked and items that past 
experiences have deemed need extra 
attention from the setter and also the peer 
reviewer. 



Formalized Settings Peer 
Reviews



Line Settings Robust Checklist



Automated Relay Settings

• PCE has worked with an 
outside consultant to 
development an Automated 
Relay Settings (ARS) tool  

• ARS has many different 
benefits, but the three most 
important are its ability to 
reduce human error, its 
ability to reduce 
engineering labor 
time/cost, and its ability to 
enforce consistent setting 
criteria/philosophies



Automated Relay Settings



Automated Relay Settings



Automated Relay Settings

• Interfaces with short circuit software
• Interfaces with raw setting files
• Promotes consistent settings
• Easy to update software
• Is a tool, not a complete solution, still requires 

some engineering and sanity checks



PRC-027 Area Coordination 
Reviews

• One of the standard’s requirements calls for 
performing a periodic relay system coordination review 
every six‐calendar years. 

• PCE has taken the approach of completely resetting all 
of its BES terminal so that they are up to modern 
criteria/philosophies “The Great Reset”

• 500‐765kV complete, 345kV expected complete by end 
of 2022, 100‐161kV complete by end of 2023

• Heavily proactive approach that requires a lot of 
resources, but will pay off in reducing risk and 
misoperations



Relay Failures

• Trending misoperation cause for AEP
• AEP still has a lot of Electromechanical relays 

that we are upgrading via capital projects
• Older first generation IED relays are now 

starting to reach the end of their lives and we 
are starting to proactively replace with newer 
hardware



Relay Failures

• IED relays from a particular vendor have 
periodically suffered from a memory 
corruption also referred to as a “bit flip” which 
results in the relay asserting protection 
elements during non‐fault conditions.

• AEP has worked with this vendor to prevent 
future misoperations from “bit flips” by 
implementing a change in the relay firmware



Relay Settings Criteria / 
Philosophy Improvements

• No longer set phase or ground instantaneous 
overcurrents if distance elements are available

• Enhanced its directional settings guidance for 
carrier‐based schemes that are  very reliant on 
correct direction assessments.  Rely heavily on 
negative sequence, force one common 
method at all terminals of line

• Increased carrier coordination timer to 24 
milliseconds for all carrier relays



Relay Settings Criteria / 
Philosophy Improvements

• Desensitize carrier forward ground 
overcurrent elements so that the schemes 
aren’t being tested as much.  The guidance is 
to try to set at 600 Amps primary and only 
reduce if you have sensitivity issues

• Delay carrier forward ground overcurrent 
elements by 8 cycles, to allow carrier forward 
ground distance elements to act first



Relay Settings Criteria / 
Philosophy Improvements

• Desensitize current differential schemes by 
settings at 5A secondary and only lowering if 
needed

• No longer use negative sequence differential for 
lines

• Moving towards all line schemes using individual 
currents and summing internally as opposed to 
externally

• Changed our capacitor bank design from 
ungrounded wye to grounded wye



CT Saturation

• Trending misoperation 
cause for AEP

• Often when dealing 
with multiple CTs that 
sum external

• Have not been 
consistent in past on 
how CT ratios are 
selected



Scoping CT Sizing Calculator

• PCE has developed a 
formal CT sizing 
calculator for scoping

• Helps get correct max 
ratio CTs ordered

• Identifies potential 
problems way in 
advance



Detailed CT Ratio Selection 
Calculator



Advanced Misoperation 
Metrics Dashboard



Advanced Misoperation 
Metrics Dashboard



Advanced Misoperation 
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Advanced Misoperation 
Metrics Dashboard
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Overview

▪ Negative-sequence current challenges

▪ Distance element considerations

▪ Transient-based line protection and fault locating

▪ Source-to-line impedance ratio (SIR)

▪ Directional comparison pilot schemes

▪ Line current differential

▪ Power swing blocking

▪ Conclusion and References



One-line diagram

Protected line

Communications channel

Line relay 

R1 at POMYG/D/YG

Line relay 

R2 at POI

Weak 

Grid

IBR

POM
POI



Negative-sequence 
current challenges



Type 4 Wind AB fault at remote bus
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Directional element (32)
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Distance element (21)

▪ Calculated impedance is less than set reach

▪ Loop current greater than fault-detector threshold (Zone 1)

▪ Directional element supervision (forward/reverse)

▪ Fault-type Identification and Selection (FIDS) logic does not block element

▪ No CVT transients detected (Zone 1)
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FIDS – AG fault
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Type 4 Wind 
ABG fault
External fault



Type 4 Wind 
ABG fault
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I2 vs. V2



Improved performance 
of directional and
fault type selection



IEEE Std 
2800-2022 
performance 
requirements
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Distance element 
additional considerations



I2-polarized ground quadrilateral
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Distance element operating quantity

20 30 40 50
0

2

4

6

8

Im
p
e
d
a
n
c
e
 (
Ω

, 
s
e
c
o
n
d
a
ry

)

60
Time (ms)

0 20 60 80
Time (ms)

40

–600

–200

200

400

600

C
u
rr

e
n
t 

(A
)

V
o

lt
a
g
e
 (

k
V

)

–400

0

–200

200

400

–400

0



Self-polarized offset distance elements

Reverse reach Reverse reach

Forward reach
Forward reach



IBR Grid

YG/D/YG

CB1 CB2

R1 R2

Parallel path / 

meshed network

Protected line

Increase Zone 1 reach for tie-lines without 
parallel path in a meshed network

Underreaching Zone 1Overreaching Zone 1



Transient-based methods



Transient-based directional element
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Source-to-line 
impedance ratio (SIR)



Line-to-line fault at remote bus
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Relay voltage for line-to-line faults

▪ If Z1S =    • Z L and Z2S =    • Z S,

–  SIRP(3P_FAULT) = 10

–  SIRP(LL_FAULT) = 50.9!

▪ Consider LL faults also when 
calculating SIRP
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Improve 21P Zone 1 security due to high SIR
Reduce reach and/or add time delays

▪ m1 < m1RATIO – ESS • (SIR +  )

– m1 = secure reach considering SIR

– m1RATIO = reach considering ratio 
errors (e.g., 0.90 pu)

– ESS = Steady-state error (e.g., 0.03 pu)

▪ Consider transient CCVT errors
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Directional comparison 
pilot schemes
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Line current differential



Internal AG fault
15 ohms



IBR fault response
Strong zero-sequence, but weak otherwise 
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Internal AG fault
Improved settings



No fault
Harmonics

▪ 87LQPSENS = 0.48 pu

▪ 87LQPSECURE = 0.63 pu
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Power swing blocking



Power swing 
blocking
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Conclusion



Conclusion

1. Raise negative-sequence current thresholds to improve directional 
element and FIDS logic performance

– Reliable directionality, especially for phase-to-phase faults in 
which 32Q may be the only element to provide directionality

– Voltage-based FIDS logic adds dependability and security

2. Use self-polarized phase distance with possibly offset 
characteristics supplemented by transient directional elements

3. Use ground mho or zero-sequence polarized quadrilateral

4. Increase Zone 1 reach at strong terminal in tie-line applications 
without parallel paths



Conclusion

5. Source-to-line impedance ratio (SIR) can be very high

– Consider line-to-line faults also to calculate SIR

– Reduce Zone 1 reach and/or add time delay for security or, if required,
disable Zone 1 and rely on communications-assisted protection

6. Use Hybrid POTT scheme with weak-infeed echo and trip

7. Use line current differential protection with improved settings

8. Re-evaluate power swing blocking application and settings

9. Transient-based line protection elements including
traveling-wave-based schemes can add dependability
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